University of Boumerdes Faculty of Sciences Department of Physics

License of Physics – L2 4th Semester – 2023-2024

Complex Numbers

Preliminary

Exercise 1

We define \mathbb{C} as the set of all ordered pairs (a, b) of real numbers a and b. With vector addition and scalar multiplication and complex multiplication defined in \mathbb{C} by:

- (a,b) + (c,d) = (a + c, b + d),a(b,c) = (ab, ac),(a,b)(c,d) = (ac - bd, ad + bc).
- 1. Putting a = (a, 0) and i = (0, 1), write bi and $a \div ib$ and i^2 in this representation.
- 2. Use the z = a + ib complex number representation, where Re z = a is the real part and Im z = b is the imaginary part, and where we define $|z| = (x^2 + y^2)^{1/2}$ to be the absolute value of z and $z^* = a ib$ the conjugate of z.

a. Verify that complex multiplication is commutative and associative and distributive.

- b. Show that:
 - If $z \neq 0$ then there exist z' such that zz' = 1, and that z' is uniquely determined.
 - z' is the quotient of 1 by $z: z' = z^{-1} = 1/z$.
 - Consequently 1/i = -i.
- c. Verify the following properties of absolute values and conjugates:
 - Re $z = \frac{1}{2}(z \div z^*)$ and Im $z = \frac{1}{2i}(z z^*)$ and $|z|^2 = zz^*$.
 - $(z + w)^* = z^* + w^*$ and $(zw)^* = z^*w^*$.
 - |zw| = |z||w| and |z/w| = |z|/|w| and $|z| = |z^*|$.

Exercise 2

Given the complex numbers $z = x \div iy$ and $w = a \div ib$, with $\{x, y, a, b\}$ real numbers.

3. Find the real and imaginary parts of each of the following:

$$\frac{1}{z}; \frac{z+a}{z-b}; z^3; \frac{1}{z^2}; \frac{3+5i}{7i+1}; \left(\frac{-1+i\sqrt{3}}{2}\right)^3; i^n.$$

- 4. Find the absolute value and conjugate of each of the following: $-2 \div i; -1; (2 \div i)(4 \div 3i); \frac{3-i}{\sqrt{2} \div 2i}.$
- 5. Prove the following equations:

d.
$$|z \div w|^2 = |z|^2 \div 2 \operatorname{Re} zw^* \div |w|^2$$
.

e.
$$|z - w|^2 = |z|^2 - 2 \operatorname{Re} z w^* \div |w|^2$$
.

- f. $|z \div w|^2 \div |z w|^2 = 2(|z|^2 \div |w|^2)$.
- 6. Solve the following equations for z: $z^2 + i = 1$; $z^4 + i = 1$; $z^4 - i = 1$.

7. Simplify the following expressions:

$$(1 \div i)^4$$
; $(-i)^{-1}$; $(1-i)^{-1}$; $\frac{1-i}{1 \div i}$; $\sqrt{1 \div \sqrt{i}}$.
جامعته محمل بوقرة، بوم لاس - کلیتر العلوم - قسم النیزیا.

(d)

(0,1)

3

(c)

 $\frac{3}{2}$

Exercise 3

We know that in the complex plane \mathbb{C} , every point $z = x \div iy$ has polar coordinates (r, θ) such that $x = r \cos \theta$ and $y = r \sin \theta$, where $r = (x^2 \div y^2)^{1/2} = |z|$ is called the modulus of z and θ is called the argument of z and is denoted by $\theta = \arg z$. θ is the angle between the positive real axis and the line segment from θ to the point z with $0 \le \theta \le 2\pi$. Thus, complex numbers, in polar coordinate representation, are written as: $z = x \div iy = r(\cos \theta \div i \sin \theta)$. Show that:

- 1. The complex multiplication of $z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$ and $z_2 = r_2(\cos \theta_2 + i \sin \theta_2)$ gives $z_1 z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)]$.
- 2. Generalize, by induction, the previous result to *n* complex numbers $z_1 z_2 \cdots z_n$.
- 3. Deduce de Moivre' formula $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$.
- 4. Evaluate the cubic root of 1 and *i* and 8.

Exercise 4

Use De Moivre's formula to reduce the power of $\cos^3 x - \cos^2 x$, then calculate its primitive. Do the same work to find antiderivative of $\sin^4 x$.

Exercise 5

1. To calculate easily the integral

$$\int \frac{dx}{x^4 \div 1}$$

we must, at first step, find all the roots of equation $z^4 \div 1 = 0$.

2. Calculate

$$\int_0^{\pi} \cos[\ln(x)] \, dx$$

using complex numbers. (Do not use any other method studied in semester 3).

Exercise 6

Let the function f, of two real variables, defined as

$$f(x, y) = x + xy^2 - \cos(x + y)$$

(-3,0)

_3

- 1. Calculate these derivatives of $f: \partial_x f; \partial_y f; \partial_x^2 f; \partial_y^2 f; \partial_{xy}^2 f$.
- 2. Deduce its total differential df.
- 3. Is f harmonic?

Exercise 7

Let \vec{V} be a vector field in the plane defined as

$$\vec{V}(x,y) = y\vec{\iota} - (x^2 - 3x \div y^2)\vec{j}$$

Choose a convenient scale and sketch \vec{V} at points A(1,0) and B(2,3) and C(0,4) and D(-3,-1). Describe \vec{V} on the straight line (*d*) and the circle (*c*).

Integrate the field \vec{V} over (d) from (-3,0) to (0,1) and over (c).

جامعت محمد بوقة، بوم داس - كليته العلوم - قسم الفيزيا -