Complex Numbers

Preliminary

Exercise 1

We define \mathbb{C} as the set of all ordered pairs (a, b) of real numbers a and b. With vector addition and scalar multiplication and complex multiplication defined in \mathbb{C} by:

$$
\begin{aligned}
& (a, b)+(c, d)=(a+c, b+d) \\
& a(b, c)=(a b, a c) \\
& (a, b)(c, d)=(a c-b d, a d+b c)
\end{aligned}
$$

1. Putting $a=(a, 0)$ and $i=(0,1)$, write $b i$ and $a+i b$ and i^{2} in this representation.
2. Use the $z=a+i b$ complex number representation, where $\operatorname{Re} z=a$ is the real part and $\operatorname{Im} z=b$ is the imaginary part, and where we define $|z|=\left(x^{2}+y^{2}\right)^{1 / 2}$ to be the absolute value of z and $z^{*}=a-i b$ the conjugate of z.
a. Verify that complex multiplication is commutative and associative and distributive.
b. Show that:

- If $z \neq 0$ then there exist z^{\prime} such that $z z^{\prime}=1$, and that z^{\prime} is uniquely determined.
- z^{\prime} is the quotient of 1 by $z: z^{\prime}=z^{-1}=1 / z$.
- Consequently $1 / i=-i$.
c. Verify the following properties of absolute values and conjugates:
- $\operatorname{Re} z=\frac{1}{2}\left(z+z^{*}\right)$ and $\operatorname{Im} z=\frac{1}{2 i}\left(z-z^{*}\right)$ and $|z|^{2}=z z^{*}$.
- $(z+w)^{*}=z^{*}+-w^{*}$ and $(z w)^{*}=z^{*} w^{*}$.
- $|z w|=|z||w|$ and $|z / w|=|z| /|w|$ and $|z|=\left|z^{*}\right|$.

Exercise 2

Given the complex numbers $z=x+i y$ and $w=a-i b$, with $\{x, y, a, b\}$ real numbers.
3. Find the real and imaginary parts of each of the following:
$\frac{1}{z} ; \frac{z+a}{z-b} ; z^{3} ; \frac{1}{z^{2}} ; \frac{3+-5 i}{7 i+-1} ;\left(\frac{-1+i \sqrt{3}}{2}\right)^{3} ; i^{n}$.
4. Find the absolute value and conjugate of each of the following:
$-2+i ;-1 ;(2+i)(4+3 i) ; \frac{3-i}{\sqrt{2}+3 i}$.
5. Prove the following equations:
d. $|z+w|^{2}=|z|^{2}+2 \operatorname{Re} z w^{*}+|w|^{2}$.
e. $|z-w|^{2}=|z|^{2}-2 \operatorname{Re} z w^{*}+|w|^{2}$.
f. $\quad|z+w|^{2}+|z-w|^{2}=2\left(|z|^{2}+|w|^{2}\right)$.
6. Solve the following equations for z :
$z^{2}+i=1 ; z^{4}+i=1 ; z^{4}-i=1$.
7. Simplify the following expressions:
$(1+i)^{4} ;(-i)^{-1} ;(1-i)^{-1} ; \frac{1-i}{1+i} ; \sqrt{1+\sqrt{i}}$.

Exercise 3

We know that in the complex plane \mathbb{C}, every point $z=x-i y$ has polar coordinates (r, θ) such that $x=r \cos \theta$ and $y=r \sin \theta$, where $r=\left(x^{2}+y^{2}\right)^{1 / 2}=|z|$ is called the modulus of z and θ is called the argument of z and is denoted by $\theta=\arg z . \theta$ is the angle between the positive real axis and the line segment from O to the point z with $0 \leq \theta \leq 2 \pi$. Thus, complex numbers, in polar coordinate representation, are written as: $z=x+i y=r(\cos \theta+i \sin \theta)$. Show that:

1. The complex multiplication of $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$ gives $z_{1} z_{2}=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right]$.
2. Generalize, by induction, the previous result to n complex numbers $z_{1} z_{2} \cdots z_{n}$.
3. Deduce de Moivre' formula $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$.
4. Evaluate the cubic root of 1 and i and 8.

Exercise 4

Use De Moivre's formula to reduce the power of $\cos ^{3} x-\cos ^{2} x$, then calculate its primitive. Do the same work to find antiderivative of $\sin ^{4} x$.

Exercise 5

1. To calculate easily the integral

$$
\int \frac{d x}{x^{4}+1}
$$

we must, at first step, find all the roots of equation $z^{4}+1=0$.
2. Calculate

$$
\int_{0}^{\pi} \cos [\ln (x)] d x
$$

using complex numbers. (Do not use any other method studied in semester 3).

Exercise 6

Let the function f, of two real variables, defined as

$$
f(x, y)=x+x y^{2}-\cos (x+y)
$$

1. Calculate these derivatives of $f: \partial_{x} f ; \partial_{y} f ; \partial_{x}^{2} f ; \partial_{y}^{2} f ; \partial_{x y}^{2} f$.
2. Deduce its total differential $d f$.
3. Is f harmonic?

Exercise 7

Let \vec{V} be a vector field in the plane defined as

$$
\vec{V}(x, y)=y \vec{\imath}-\left(x^{2}-3 x+y^{2}\right) \vec{\jmath}
$$

Choose a convenient scale and sketch \vec{V} at points $A(1,0)$ and $B(2,3)$ and $C(0,4)$ and $D(-3,-1)$.
Describe \vec{V} on the straight line (d) and the circle (c).
Integrate the field \vec{V} over (d) from $(-3,0)$ to $(0,1)$ and over (c).

