
(2ème Semestre 2020-2021)

Dette Physique 2 (Durée 1h)

Exercice 1

On considère deux charges électriques ponctuelles Q_A et Q_B placées respectivement aux points A et B (figure ci-contre).

- 1. Déterminer et représenter le champ électrique $\overrightarrow{E_0}$ produit par les deux charges au point O.
- 2. Calculer le potentiel V_0 produit par les deux charges au point O.

On place au point O une charge $Q_0 = 10^{-6}$ C où elle est soumise à l'action des deux charges Q_A et Q_B .

- 3. En déduire la force électrique $\overrightarrow{F_0}$ exercée sur Q_0 ainsi que son énergie potentielle $E_p(Q_0)$.
- 4. Calculer l'énergie interne du système formé par les trois charges.

On donne : $Q_A = Q_B = Q = -1.6 \cdot 10^{-5} C$, OA = OB = d = 4 cm et $K = 9 \cdot 10^9 Nm^2 C^{-2}$.

Exercice 2

Soient deux condensateurs, de capacités C_1 et C_2 , portés initialement aux potentiels respectifs V_1 et V_2 leurs permettant de se charger avec Q_1 et Q_2 (figure 1 ci-dessous).

- 1. Calculer les différences de potentiels V_1 et V_2 aux bornes de chaque condensateur.
- 2. Calculer l'énergie emmagasinée par l'ensemble des deux condensateurs.

On associe parallèlement les deux condensateurs. Le contact entre les armatures est indiqué en pointillés (figure 2 ci-dessous).

- 3. Calculer la charge finale aux bornes des deux condensateurs après contact Q'_1 et Q'_2 .
- 4. Calculer les différences de potentiels V_1' et V_2' aux bornes de chaque condensateurs.
- 5. Calculer l'énergie emmagasinée par l'ensemble des deux condensateurs après contact.
- 6. Comparer l'énergie emmagasinée avant et après contact. Expliquer.

Figure 1 : Condensateurs avant Contact

Figure 2 : Condensateurs après Contact